A Topoclimatic Air Temperature Dataset for the Conterminous U.S.

Jared W. Oyler

ET Workshop May 29, 2015

Montana Climate Office

Outline

- Overview of existing topoclimate datasets
- Motivations for creating a new topoclimatic temperature dataset
 - TopoWx
 - 1948 to present daily Tmin and Tmax at ~800m resolution
- TopoWx methods
 - Station observation homogenization
 - MODIS land skin temperature
 - Moving window regression kriging
- Analysis of TopoWx temperature outputs
 - Spatial component (1981-2010 normals)
 - Temporal component (trends)
- Conclusions

Topoclimatic Temperature Datasets

"Topoclimatic modeling refers to spatial estimates of climate that take into account topographic position in the landscape" (*Dobrowski et al.,* 2009).

Interpolated Topoclimatic Datasets: use pointsource weather station data and a DEM to incorporate the effects of topoclimatic factors and statistically interpolate climate variables to a regular grid (800-m to 12-km).

PRISM (Daly et al. 2008) PRISM

Daymet (Thornton et al. 1997)

UW (Maurer et al. 2002; Livneh et al. 2013)

Weather **Stations**

DEM and **DEM-Derived** Variables

Interpolated Topoclimatic Dataset

Motivations

Main motivations for creating new topoclimatic air temperature dataset for CONUS (TopoWx):

- CONUS topoclimate datasets use statistical models strictly driven by DEM-based predictor variables
- 2. CONUS topoclimate datasets do not homogenize input station data
- CONUS topoclimate datasets do not provide estimates of spatial uncertainty
- CONUS topoclimate datasets are proprietary and closed source

TopoWx Methods: 1948-2012 Daily Tmin and Tmax at 800-m resolution

Input Weather Station Data

- 14,087 input stations
- Each station has >= 5 years of raw data, 1948 2012
- GHCN-D QA procedures (*Durre et al.* 2010)

Homogenization

- Inhomogeneity: a change in a temperature observation record resulting from non-climatic influences
- Homogenization: the detection and removal of inhomogeneities
- Pairwise Homogenization Algorithm*
 - Statistical homogenization procedure used for USHCN

Missing Observation Infilling

How to handle incomplete 1948-2012 data records and missing data?

- Simply interpolating raw incomplete data could produce inhomogeneities in the gridded output as the number of stations and station spatial coverage vary during the 1948-2012 time period
- Don't want to throw away key observations, (i.e.—SNOTEL, RAWS)
- Expectation maximization and principal component analysis-based infilling of missing station observations using:
 - Long-term stations
 - NCEP/NCAR Reanalysis: temperature, thickness,
 geopotential height, wind, sea level pressure

Stuart Peak SNOTEL Tmax Near Missoula, MT. Observing since 1994

Interpolation Methods

Auxiliary Spatial Predictors of Temperature

- 1. Elevation
- Topographic Dissection Index
- 3. MODIS Land Skin Temperature

Crown of the Continent Ecosystem, Montana

Does MODIS LST capture topoclimatic and land surface biophysical spatial variations crucial for air temperature interpolation or is it redundant with DEM-based predictor variables?

Tmin Avg. Land Skin Temperature: August 2003-2012

Linear Relationship of Tmin and Nighttime LST

Poor

Aug. Tmin

Big Hole, MT

Indianapolis, IN

Linear Relationship of Tmax and Daytime LST

Interpolation Methods

Step 1: Interpolate Tmin/Tmax monthly normals (1981-2010) using **Moving Window Regression Kriging**

Deterministic spatial trend in normal temperature

$$\bar{T}(s_0, m_0) = \beta_0 + \beta_1 x + \beta_2 y + \beta_3 z + \beta_4 lst(m_0) + \sum_{i=1}^{n} w_i(s_0, m_0) \cdot \bar{T}_e(s_i, m_0)$$

Random spatially autocorrelated residual

$$\sum_{i=1}^{n} w_i(s_0, m_0) \cdot \bar{T}_e(s_i, m_0)$$

Symbol	Description
$\bar{T}(s_0, m_0)$	Normal temperature for grid cell s_0 and month m_0
x	Longitude
у	Latitude
Z	Elevation
$lst(m_0)$	MODIS 10 year (2003-2012) mean land skin temperature for month $m_{\rm 0}$

Symbol	Description
$w_i(s_0, m_0)$	Weights defined by residual spatial covariance
$\bar{T}_e(s_i, m_0)$	Regression residuals for n stations

Interpolation Methods

Step 2: Interpolate daily Tmin/Tmax anomalies around \overline{T} normals using a daily-varying Geographically Weighted Regression

$$\delta T(s_0, d_0) = \beta_0 + \beta_1 x + \beta_2 y + \beta_3 z + \beta_4 lst(m_0) + \beta_5 tdi$$

Symbol	Description
$\delta T(s_0, d_0)$	Daily temperature anomaly for grid cell s_0 and day d_0
tdi	Topographic Dissection Index (<i>Holden et al.</i> 2011) o = deep valley; 5 = ridge/peak

Step 3: Combine monthly normals and daily anomalies to get final 1948-2012 temperature estimates

$$T(s_0, d_0) = \bar{T}(s_0, m_0) + \delta T(s_0, d_0)$$

TopoWx Temperature Outputs: 1981-2010 Normals

1981-2010 Monthly Normals Cross Validation Mean Absolute Error

Western U.S. Comparison

Nevada Northeastern Climate Division

California
North Coast
Drainage
Climate Division

TopoWx Temperature Outputs: Temporal Variability and Trends

1981-2012 Annual Temperature Trends

1981-2012 Annual Temperature Trends

1981-2012 Annual Temperature Trends

SNOTEL Station Changes

- Mid 1990s to mid 2000s: field campaigns conducted to standardize SNOTEL temperature sensors.
- Sensors moved to new standardized meteorological data collection tower at each site.
- Changes in:
 - Sensor type
 - Radiation shields
 - Height

http://www.nrcs.usda.gov/Internet/FSE_MEDIA/nrcs144p2_039763.gif

Conclusions

Conclusions

TopoWx contributes 3 main advancements to topoclimatic temperature interpolation:

- 1. An improved representation of interdecadal and long-term temperature trends
- 2. An improved representation of complex temperature spatial patterns, particularly for Tmin
- 3. A spatial representation of uncertainty that accounts for both model goodness of fit and the geographical arrangement of stations

These advancements were made through:

- 1. The use of previously developed homogenization procedures
- 2. Remotely sensed land skin temperature as an auxiliary predictor of topoclimatic air temperature
- 3. An unique implementation of moving window regression kriging

Conclusions

- Topoclimatic temperature datasets commonly used for climate impact analyses in the western U.S. are not robust to station inhomogeneities and subsequently contain spatially structured warm and cold trend biases
- Widespread systematic inhomogeneities in the SNOTEL network have artificially amplified an elevation-dependent warming signal across much of the western US, and have significantly biased trend estimates from widely used climate data products
- In the context of a warming climate, this artificial amplification of mountain climate trends has likely compromised our ability to accurately attribute climate change impacts across the mountainous western US.

Thank You

Committee

Steve Running

Ashley Ballantyne

Solomon Dobrowski

Anna Klene

Marco Maneta

University of Montana

Ryan Anderson

Ruben Behnke

Niels Maumenee

Jami Seirer

Bill Smith

Michael Sweet

NRCS

Brian Domonkos

Randy Julander

Phil Morrisey

Tony Tolsdorf

Lucas Zukiewicz

Oyler, J. W., A. Ballantyne, K. Jencso, M. Sweet, and S. W. Running (2014), Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature, *Int. J. Climatol.*, doi:10.1002/joc.4127.

Oyler, J. W., S. Z. Dobrowski, A. P. Ballantyne, A. E. Klene, and S. W. Running (2015), Artificial Amplification of Warming Trends Across the Mountains of the Western United States, *Geophys. Res. Lett.*, doi:10.1002/2014GL062803.

